Intenzifikace výroby bioplynu - předpoklady a praktické zkušenosti

Abstract :

Současný provoz zemědělských bioplynových stanic je založen především na zpracování cíleně pěstované fytomasy jako hlavního substrátu. Vzhledem k malé biologické rozložitelnosti celulózy a jejich derivátů a také ligninu, pouze část přítomného organického uhlíku je při anaerobní fermentaci transformovaná na bioplyn, značná část zůstává nevyužita.

An achievement of a higher biogas production linked with more electricity with the effective utilization of an existing facility is possible to realize by increasing of operation efficiency and by an enhancement of biogas yield of a given substrate. The utilization of substrate is strongly influenced by substrate composition and different methods of substrate pretreatment and handling is discussed.

Úvod

Současný provoz zemědělských bioplynových stanic je založen vedle odpadů z velkochovů hospodářských zvířat především na zpracování cíleně pěstované fytomasy jako hlavního substrátu. Vzhledem k malé biologické rozložitelnosti celulózy a jejich derivátů a také přítomnosti ligninu ve fytomase, pouze část přítomného organického uhlíku je při anaerobní fermentaci transformovaná na bioplyn a značná část zůstává nevyužita.

Produkce rostlinných surovin pro bioplynové stanice je omezena výkonností zemědělství, proto další zvyšování produkce bioplynu může být dosaženo pouze lepším využitím zpracovávaných surovin. To znamená zvýšení biologické rozložitelnosti zpracovávaného substrátu s cílem dosažení zvýšené transformace organického uhlíku do bioplynu.

Získání co nejvyšší produkce bioplynu a tím elektrické energie za současného efektivního využití daného zřízení je snahou každého provozovatele bioplynové stanice. Obecně lze vyšší produkce bioplynu dosáhnout:

  • zvýšením výkonnosti stávající bioplynové stanice,
  • zlepšením využití daného substrátu – zvýšení výtěžnosti bioplynu.

Zvýšení výkonnosti bioplynové stanice.

Zlepšení výkonnosti bioplynové stanice lze dosáhnout především optimalizací provozu stanice. To jest zabezpečení optimálních podmínek procesu vhodným dávkováním substrátu, dostatečným mícháním reaktorů, dodržováním technologických parametrů - správného zatížení a doby zdržení, zabezpečení konstantní teploty [9].

Důležitá je identifikace příčiny problémů provozu stanice, což může být vysoká koncentrace amoniaku nebo sulfidů. Pak lze na příklad zařadit intenzivnější odstraňování sulfidů (zvýšení mikroaerace nebo srážení sloučeninami železa) nebo úpravou technologie na méně citlivou na vysokou koncentraci amoniaku – termofilní provoz, dvoustupňový provoz, srážení amoniaku apod.

Další možností zvýšení výkonnosti bioplynové stanice je volba skladby substrátu ve prospěch lépe rozložitelných substrátů s vyšší výtěžností bioplynu nebo s nižším obsahem organického dusíku.

Zvýšení výtěžnosti bioplynu

Zvýšení biologické rozložitelnosti a tím i výtěžnosti metanu lze dosáhnout vhodnou předúpravou suroviny. Všechny metody předúpravy jsou založeny na zpřístupnění složek materiálu enzymovému rozkladu. Zmenšením velikosti částic mechanickou nebo jinou dezintegrací dochází k podstatnému zvětšení povrchu a tím i k větší dostupnosti enzymovému rozkladu, u některých metod dochází i k hydrolýze makromolekulárních látek.

Teoretické možnosti intenzifikace procesu metanizace

Intenzifikace fermentačních procesů musí vycházet ze základních vlastností procesu. Mikroorganismy, které se fermentace zúčastňují, se vyznačují nízkými růstovými rychlostmi a nízkou rychlostí odstraňování substrátu a jejich biomasa narůstá velmi pomalu. Úsilí intenzifikace musí být tedy především zaměřeno na rychlost rozkladu a na množství a aktivitu anaerobní mikrobiální kultury.

Rychlost rozkladu

Anaerobní fermentace je souborem následných i souběžných reakcí. V takovémto případě limitující reakcí celého systému je reakce nejpomalejší. Tou může být hydrolýza makromolekulárních látek, rozpuštěných i nerozpuštěných nebo za určitých okolností v případě snadno rozložitelných substrátů to může být i metanogeneze. Z dalších limitujících reakcí přicházejí v úvahu reakce rozkladu kyseliny propionové a kyseliny máselné, které jsou velmi důležité z hlediska udržení dynamické rovnováhy celého systému

Kvalita a množství biomasy v reaktoru

Rychlost rozkladu organických látek závisí na množství a kvalitě aktivní kultury mikroorganizmů, proto je snahou udržovat jejich koncentraci v reaktoru co nejvyšší. Koncentrace biomasy mikroorganizmů, v anaerobním reaktoru je ovlivňována řadou biokinetických a technologických faktorů, závisí přímo úměrně na koeficientu produkce biomasy, množství odstraněného substrátu a době zdržení biomasy mikroorganizmů a nepřímo závisí na hydraulické době zdržení: (Dohányos et al.,1982)

vzorec

Kde:
X, [kg/m3 ] - koncentrace biomasy mikroorganizmů v reaktoru
Y, [kg/kg] - koeficient produkce biomasy
ΔS, [kg/m3] - množství odstraněného substrátu
Θx, [d] - době zdržení biomasy mikroorganizmů
Θ, [d] - hydraulická doba zdržení
kd, [1/d] - rychlostní konstanta úbytku biomasy

Z výše uvedené rovnice vyplývá, že při konstantních ostatních parametrech je koncentrace biomasy mikroorganizmů v reaktoru úměrná poměru Θx/Θ. Čím bude Θx větší než, tím bude vyšší koncentrace biomasy mikroorganizmů,. Zvětšení doby zdržení biomasy mikroorganizmů proti hydraulické době zdržení je možno dosáhnout v zásadě dvěma způsoby:

  • kultivací anaerobních mikroorganismů ve formě nárostů (biofilmu) nebo v agregované formě (granule).
  • recirkulací biomasy (biomasa se úplně nebo částečně separuje od kapalné fáze a vrací se zpět do reaktoru).

Reaktory na bioplynových stanicích pracují z hydraulického hlediska jako chemostaty, kde je doba zdržení biomasy mikroorganizmů stejná jako hydraulická doba zdržení. To znamená, že koncentrace biomasy mikroorganizmů bude záviset pouze na produkční konstantě biomasy a množství odstraněného substrátu. Zvýšení koncentrace biomasy mikroorganizmů můžeme tedy za dané hydraulické doby zdržení dosáhnout buď zvýšením produkce biomasy mikroorganizmů stimulací jejich činnosti nebo zvýšením množství rozloženého substrátu například výběrem lépe rozložitelného substrátu nebo zvýšením jeho rozložitelnosti.

Biologická rozložitelnost organických látek a výtěžnost metanu

Pro popis kvality substrátu z hlediska jeho teoretického energetického obsahu je používáno několik kritérií. K tomuto účelu může sloužit ekvivalent dostupných elektronů obsažených v substrátu. V anaerobním systému, kde jsou jiné finální akceptory elektronů než kyslík, lze použít vztah ekvivalentu dostupných elektronů a jednoho molu kyslíku a používat pro míru energetického obsahu substrátu kyslíkové jednotky ve formě CHSK. Teoretická výtěžnost metanu závisí především na oxidačním stupni daného substrátu, vyjádřenému jako průměrné oxidační číslo uhlíkového atomu v molekule substrátu, které je ve vztahu k CHSK.

Její stanovení je jednou z nejčastěji prováděných rutinních analýz ve vodohospodářských i dalších laboratořích, používá se pro návrh, řízení i kontrolu technologie procesu a u většiny hodnocených substrátů bývá tento údaj k dispozici. Na základě CHSK je možno vypočítat teoretické maximálně možné množství metanu, které lze z dané suroviny získat, a tato hodnota je referenční 100 % hodnotou pro výpočet rozložitelnosti, to je reálného podílu organických látek transformovatelných na metan. Skutečná výtěžnost je poměrně nižší protože část substrátu je za daných podmínek biologicky nerozložitelná.

Vliv chemického složení substrátu na výtěžnost metanu.

Biologická rozložitelnost a tím i výtěžnost bioplynu závisí na chemickém složení substrátu, na obsahu sacharidů, tuků, proteinů, na podílu celulózy, hemicelulóz a ligninu eventuelně dalších inertních složek materiálu a na poměru jednotlivých komponent. Vzhledem k tomu, že poměr těchto komponent v různých druzích suroviny je různý, odlišná je i jejich rozložitelnost a výtěžnost metanu.

Polysacharidy Jsou součástí veškeré rostlinné biomasy, patří sem škrob, celulóza a hemicelulózy. Teoretická výtěžnost metanu je daná jejich POXČ, které je pro všechny polysacharidy 0,00. Z toho plyne, že z molekuly sacharidů vzniknou tři molekuly metanu a tři molekuly CO2, tedy teoretický obsah metanu v bioplynu je 50 %. Z polysacharidů je nejlépe rozložitelný škrob, který se poměrně snadno hydrolyzuje amylolytickými enzymy.

Celulóza je polymerem glukózy, v biotechnologickém procesu je relativně málo rozložitelná. Pro její hydrolýzu je nutná přítomnost celulolytických enzymů, které jsou přítomny v zažívacím traktu přežvýkavců. Další skupinou polysacharidů jsou heteropolysacharidy - hemicelulózy, které tvoří rozvětvené řetězce s prostorovou strukturou. Hemicelulózy podléhají snáze a rychleji enzymatické hydrolýze než celulóza.

Lignin. Vedle biologicky rozložitelných sacharidů a polysacharidů obsahuje rostlinná biomasa i látky jejichž biologická rozložitelnost je velmi nízká až nulová. Mezi tyto látky patří především lignin a též lignany a terpeny. Lignin je organickou součásti nejenom každé rostlinné biomasy, ale materiálů z ní pocházejících, jakou jsou například různé druhy kejdy nebo hnoje a je hlavní součástí biologicky nerozložitelné frakce organických látek v stabilizovaném zbytku po anaerobní fermentaci.

Lipidy. Společnou charakteristikou lipidů je přítomnost mastných kyselin s dlouhým alifatickým řetězcem a malým počtem atomů kyslíku v jejich molekulách, což odpovídá nízkému POXČ v rozmezí od -1,63 do -1,70. To je důvod, že tuky mají nejvyšší výtěžnost metanu ze všech skupin substrátů. Podléhají relativně snadno enzymové hydrolýze. Problémem může být technické zvládnutí rozkladu tuků, které díky své hydrofobicitě mohou mít tendenci vyplouvat k hladině, oddělovat se z vodní fáze nebo zvyšovat tvorbu pěny.

Proteiny. Proteiny patří mezi dobře biologicky rozložitelné látky, jejich POXČ se pohybuje v rozmezí od –1,2 až – 2. To znamená, že vykazují vysokou výtěžnost metanu. Proteiny jako jediné s výše uvedených substrátových skupin obsahují ve svých molekulách heteroatomy. Kromě uhlíku, vodíku a kyslíku obsahují také síru a hlavně dusík. Dusík při anaerobní fermentaci přechází amoniak, který při vyšších koncentracích může způsobovat inhibici tvorby metanu.

Poměr C:N je důležitý pro dobrý průběh anaerobního procesu. Jestli je tento poměr vysoký, dochází k deficitu dusíku. Při nízkém poměru dochází k vysoké produkci amoniaku, který je při vyšších koncentracích toxický pro anaerobní bakterie, zejména metanogeny. Toxicky působí nedisociovaná forma amoniaku, jejíž koncentrace závisí především na pH, s vyšším pH silně vzrůstá. Optimální poměr C:N pro anaerobní fermentaci organické frakce tuhého odpadu se pohybuje okolo 25 až 30, vztaženo na biologicky rozložitelný uhlík, pro anaerobní fermentaci exkrementů hospodářských zvířat nebo jatečních a kafilerních odpadů se za optimální poměr C:N považuje 16 až 19. Za kritický se považuje poměr C:N 12.

V technologické praxi se většinou setkáváme s komplexním složením suroviny pro anaerobní fermentaci, v níž jsou zastoupeny v různém poměru (podle původu a zpracování suroviny) všechny výše uvedené skupiny substrátů. Jak již bylo uvedeno, ne všechny organické látky přítomné v surovině se v průběhu procesu rozloží, část jich zůstává jako tzv. nerozložitelný zbytek ve zfermentovaném materiálu. Jaký podíl organických látek zůstane nerozložený závisí i na technologických podmínkách procesu (teplota, doba zdržení, předúprava).

Vliv předúpravy a manipulace se surovinou na výtěžnost metanu

Ke zvýšení biologické rozložitelnosti různých druhů surovin pro anaerobní fermentaci se začínají stále více uplatňovat různé metody předúpravy zpracovávaného materiálu. Cílem předúpravy je

  • prohloubení biologického rozkladu a tím zvýšení produkce metanu (bioplynu),
  • hygienizace fermentovaného materiálu, kde to požaduje legislativa
  • minimalizace množství výstupního stabilizovaného materiálu (u čistírenských kalů).

Vzhledem k tomu, že většina zpracovávaných organických látek je v partikulární formě, nejdůležitějším procesem rozkladu je jejich převedení do roztoku - hydrolýza. Ta probíhá v důsledku přítomnosti bakterií produkujících hydrolytické enzymy a její rychlost může být podstatně zvýšena různými způsoby dezintegrace a fyzikální nebo chemické předúpravy zpracovávaného materiálu.

Mechanické metody – sem patří různé způsoby dezintegrace tuhých složek substrátu – mletí, drcení a pod. Zmenšením velikosti částic dochází ke zvětšení celkového povrchu a ke zlepšení přístupnosti organických látek v substrátu enzymatickému rozkladu [1].

Chemické metody – mezi chemické metody patří například působení alkálií, kyselin, nebo oxidačních činidel (např. ozon), které vede k destrukci složitých organických látek – hydrolýze [2, 10, 11]. Přídavkem chemikálií (např. H2SO4) se ale do systému mohou vnášet nežádoucí složky (síra).

Fyzikální metody – na příklad termická hydrolýza, ionizující záření, působení ultrazvuku. Dochází k destrukci složitých organických látek [3,10,11]. Termická předúprava požadovaná legislativou může být pasterizace při 70 °C nebo hygienizace při 130 °C podle druhu suroviny, obě metody vedle sanitačního efektu fungují jako termická hydrolýza a zvyšují výtěžnost bioplynu.

Biotechnologické metody - enzymová nebo mikrobiální předúprava – použití čistých komerčně vyráběných enzymů – např. celuláz [4,7], přímé použití mikroorganizmů s vysokou celulázovou aktivitou - bachorové kultury [5,6], anaerobní houby [8]. Dotování fermentační směsi mikronutrienty jako například Co, Ni, Mo může v případě průmyslových jednodruhových substrátů podstatně vylepšit proces [9].

Významný vliv na výtěžnost metanu má i způsob zacházení a skladování suroviny. Vzhledem k tomu, že zpracovávaná surovina je většinou nesterilní směsí různých snadno i hůře rozložitelných organických látek, jsou přítomny i různé mikroorganizmy a tudíž mohou probíhat samovolné biologické procesy rozkladu podle podmínek prostředí. Obyčejně při tom dochází k úniku vznikajících plynných nebo těkavých látek a k poklesu organických látek. Při delším skladování např. prasečí kejdy může dojít k úbytku až 40 % celkové CHSK a v tomto poměru se sníží i výtěžnost metanu.

Závěry

Prakticky všechny uvedené způsoby intenzifikace a zvýšení rozložitelnosti je však třeba hodnotit individuálně podle konkrétního substrátu, místních podmínek a ekonomické a technické náročnosti dané metody.

Kromě mechanické dezintegrace a termické hydrolýzy, které se již v provozu používají, jsou nejvíce nadějné biotechnologické metody zvýšení rozložitelnosti. Používání čistých enzymů (celuláz) je již komerční záležitostí, avšak je zde ještě mnoho nedořešených otázek. Výrobky různých producentů reagují různým způsobem, neexistuje jednoznačná metodika jejich aplikace, která by zaručovala výrobcem deklarované výkonnosti. Zatím nejsou prozkoumány závislosti funkce enzymových přípravku různých výrobců na změny technologických podmínek anaerobní fermentace. Negativním faktorem je také vysoká cena enzymových přípravků a nutnost pravidelného dávkování do reaktoru.

Slibná je i biotechnologická metoda aplikace mikroorganizmů se zvýšenou celulázovou aktivitou přímo do anaerobního reaktoru ve směsi s ostatními mikroorganizmy fermentace, je však zatím ve stadiu výzkumu.

Současné problémy anaerobní fermentace organických materiálů nejsou spojeny jen se vstupními surovinami a technologickými parametry, ale také s technickým řešením bioplynové stanice, kvalitou a správným výběrem jednotlivých komponent a jejich funkčnosti. Potom i náhradou některých zařízení za účinnější a spolehlivější je možno intenzifikovat provoz stanice.

Literatura

[1] Baier U., Schmidheiny P. (1997) Enhanced anaerobic degradation of mechanically digested biosolids. Wat. Sci. Tech. 36, No 11, 137-146.
[2] Mukherjee, S.R. and Levine, A.D. (1992). Chemical solubilization of particulate organics as a pretreatment approach. Wat.Sci.Tech. 26 (9/11), 2289-2292.
[3] McCarty, P.L., Young, L.Y., Gossett, J.M., Stuckey, D.C. and Healy, Jr. J.B. (1976). Heat treatment for increasing yields from organic materials. In Schlegel, H.G. and Barnen, J. (Ed) Microbial Energy Conversion. (179 - 199) Göttingen.
[4] Gerhardt, M., Pelenc, V., Bäuml, M. (2007). Application of hydrolytic enzymes in the agricultural biogas production: Results from practical applications in Germany. Biotechnology Journal, 2., 1481-1484.
[5] Barnes, S.P., Keller, J. (2003). Cellulosic waste degradation by rumen-enhanced anaerobic digestionWater Science and Technology Vol 48 No 4 pp 155–162.
[6] Gijzen, H. J., Zwart, K. B., Teunissen, M. J., Vogels, G. D. (1988) Anaerobic Digestion of Cellulose Fraction of Domestic Refuse by Means of Rumen Microorganisms. Biotechnology and Bioengineering, Vol. 32, Pp. 749-755
[7] Zhang, Y.H.P., Lyn, L.R. (2004). Toward an Aggregated Understanding of Enzymatic Hydrolysis of Cellulose: Noncomplexed Cellulase Systems Biotechnology and Bioengineering ,Vol. 88, No. 7, 797-824.
[8] Hodrová, B., Kopečný, J., Káš, J. (1998). Cellulolytic enzymes of rumen anaerobic fungi Orpinomyces joyonii and Caecomyces communis., Res. Microbiol. 149, 417-427.
[9] Ward, A.J. et al., (2008), Optimisation of the anaerobic digestion of agricultural resources, Bioresour. Technol. doi:10.1016/j.biortech.2008.02.044 in press.
[10] González-Fernández, C. et al., (2008), Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresour. Technol. doi:10.1016/j.biortech. 2008.04.020.
[11] Martíın,C., Helene B. Klinke, H.B., Thomsen, A.B. (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse Enzyme and Microbial Technology 40 426–432

Tento příspěvek byl vytvořen v rámci řešení projektu VaV MŽP ČR č. SP/3g4/129/07 "Intenzifikace produkce bioplynu".

Předneseno na konferenci konference „Výstavba a provoz bioplynových stanic“ 9.-12. října 2008, Třeboň

Autor: Michal Dohányos

Intenzifikace výroby bioplynu - předpoklady a prak  |  Česká bioplynová asociace

Česká bioplynová asociace
Na Zlaté Stoce 1619
370 05 České Budějovice
info@czba.cz